BioinformaticsUA: Concept Recognition in Clinical Narratives Using a Modular and Highly Efficient Text Processing Framework
نویسندگان
چکیده
Clinical texts, such as discharge summaries or test reports, contain a valuable amount of information that, if efficiently and effectively mined, could be used to infer new knowledge, possibly leading to better diagnosis and therapeutics. With this in mind, the SemEval-2014 Analysis of Clinical Text task aimed at assessing and improving current methods for identification and normalization of concepts occurring in clinical narrative. This paper describes our approach in this task, which was based on a fully modular architecture for text mining. We followed a pure dictionary-based approach, after performing error analysis to refine our dictionaries. We obtained an F-measure of 69.4% in the entity recognition task, achieving the second best precision over all submitted runs (81.3%), with above average recall (60.5%). In the normalization task, we achieved a strict accuracy of 53.1% and a relaxed accuracy of 87.0%.
منابع مشابه
BioinformaticsUA: Machine Learning and Rule-Based Recognition of Disorders and Clinical Attributes from Patient Notes
Natural language processing and text analysis methods offer the potential of uncovering hidden associations from large amounts of unprocessed texts. The SemEval-2015 Analysis of Clinical Text task aimed at fostering research on the application of these methods in the clinical domain. The proposed task consisted of disorder identification with normalization to SNOMED-CT concepts, and disorder at...
متن کاملClinical Narrative Analytics Challenges
Precision medicine or evidence based medicine is based on the extraction of knowledge from medical records to provide individuals with the appropriate treatment in the appropriate moment according to the patient features. Despite the efforts of using clinical narratives for clinical decision support, many challenges have to be faced still today such as multilinguarity, diversity of terms and fo...
متن کاملA Hybrid Approach Based on Higher Order Spectra for Clinical Recognition of Seizure and Epilepsy Using Brain Activity
Introduction: This paper proposes a reliable and efficient technique to recognize different epilepsy states, including healthy, interictal, and ictal states, using Electroencephalogram (EEG) signals. Methods: The proposed approach consists of pre-processing, feature extraction by higher order spectra, feature normalization, feature selection by genetic algorithm and ranking method, and classif...
متن کاملسیستم شناسایی و طبقهبندی موجودیتهای اسمی در متون زبان فارسی بر پایه شبکه عصبی
Named Entity Recognition (NER) is a fundamental task in natural language processing and also known as a subset of information extraction. We seek to locate and classify named entities in text into predefined categories such as the names of persons, organizations, locations, expressions of times, etc. Named Entity Recognition for English texts has been researched widely for the past years, howev...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014